More Examples of Empirical Formula Problems

The following compounds contain only carbon and hydrogen.

1. A compound is 92.26% by mass carbon and 7.74% by mass hydrogen. What is the empirical formula?

Solution: Assume 100g of sample total.

92.26
$$g \ C \cdot \frac{mol}{12.011 \ g} = 7.681 \ mol \ C$$

 $7.74 \ g \ H \cdot \frac{mol}{1.008 \ g} = 7.679 \ mol \ H$
 $\frac{7.681 \ mol \ C}{7.679 \ mol \ H} = 1.0003 \ C/H$

So there is 1 carbon atom per every hydrogen atom. The empirical formula is CH.

2. A compound is 85.63% by mass carbon and 14.37% by mass hydrogen. What is the empirical formula?

Solution: Assume 100g of sample total.

$$85.63 \ g \ C \cdot \frac{mol}{12.011 \ g} = 7.129 \ mol \ C$$

$$14.37 \ g \ H \cdot \frac{mol}{1.008 \ g} = 14.26 \ mol \ H$$

$$\frac{14.26 \ mol \ H}{7.129 \ mol \ C} = 2.0003 \ \frac{H}{C}$$

So there are 2 hydrogen atoms per every carbon atom. The empirical formula is CH₂.

3. A compound is 88.82% by mass carbon and 11.18% by mass hydrogen. What is the empirical formula?

Solution: Assume 100g of sample total.

$$88.82 \ g \ C \cdot \frac{mol}{12.011 \ g} = 7.395 \ mol \ C$$

$$11.18 \ g \ H \cdot \frac{mol}{1.008 \ g} = 11.09 \ mol \ H$$

$$\frac{11.09 \ mol \ H}{7.395 \ mol \ C} = 1.4997 \ \frac{H}{C}$$

So there are 1.5 H atoms per C atom or 3 H atoms per every 2 C atoms. The empirical formula is C_2H_3 .

4. A compound is 89.49% by mass carbon and 10.51% by mass hydrogen. What is the empirical formula? (This one is hard!)

Solution: Assume 100g of sample total.

$$89.49 \ g \ C \cdot \frac{mol}{12.011 \ g} = 7.451 \ mol \ C$$

$$10.51 \ g \ H \cdot \frac{mol}{1.008 \ g} = 10.43 \ mol \ H$$

$$\frac{10.43 \ mol \ H}{7.451 \ mol \ C} = 1.3994 \ \frac{H}{C}$$

So there are 1.4 H atoms per every C atom. This could also be interpreted as 14 H atoms for every 10 C atoms . . or 7 H atoms for every 5 C atoms. The empirical formula is C_5H_7 .

- 5. A compound is 82.66% by mass carbon and 17.34% by mass hydrogen. What is the empirical formula? (*Ans*: C_2H_5)
- 6. A compound is 87.73% by mass carbon and 12.27% by mass hydrogen. What is the empirical formula? (*Ans*: C₃H₅)
- 7. A compound is 90.85% by mass carbon and 9.15% by mass hydrogen. What is the empirical formula? (*Ans*: C_5H_6 this is another hard one!)
- 8. A compound is 83.24% by mass carbon and 16.76% by mass hydrogen. What is the empirical formula? (*Ans*: C₅H₁₂)

The following compounds contain carbon, hydrogen and oxygen.

9. A compound is 40.00% by mass carbon, 6.71% by mass hydrogen and 53.28% by mass oxygen. What is the empirical formula? (*Ans*: CH₂O)

Solution: Assume 100g of sample total.	
$40.00 \ g \ C \cdot \frac{mol}{12.011 \ g} = 3.330 \ mol \ C$	$\frac{3.330 \text{ mol } C}{3.330 \text{ mol } O} = 1.0 \text{ C/}O$
$6.71 g H \cdot \frac{mol}{1.008 g} = 6.657 mol H$	$\frac{6.657 \text{ mol } H}{3.330 \text{ mol } O} = 1.9991 \frac{H}{O}$
$53.28 \text{ g } O \cdot \frac{mol}{15.995 \text{ g}} = 3.330 \text{ mol } O$	

So there is 1 C atoms per every O atom and 2 H atoms for every O atom. The empirical formula is CH_2O .

10. A compound is 52.14% by mass carbon, 13.13% by mass hydrogen and 34.73% by mass oxygen. What is the empirical formula? (*Ans*: C_2H_6O)

Solution: Assume 100g of sample total.	
$52.14 \ g \ C \cdot \frac{mol}{12.011 \ g} = 4.341 \ mol \ C$	$\frac{4.341 \text{ mol } C}{2.171 \text{ mol } O} = 1.9995 \text{ C/}O$
$6.71 g H \cdot \frac{mol}{1.008 g} = 13.026 mol H$	$\frac{13.026 \text{ mol } H}{2.171 \text{ mol } O} = 6.0 \frac{H}{O}$
$34.73 \ g \ O \cdot \frac{mol}{15.995 \ g} = 2.171 \ mol \ O$	

So there are 2 C atoms per every O atom and 6 H atoms for every O atom. The empirical formula is C_2H_6O .

11. A compound is 26.68% by mass carbon, 2.24% by mass hydrogen and 71.08% by mass oxygen. What is the empirical formula?

 Solution: Assume 100g of sample total.

 26.68 g C $\cdot \frac{mol}{12.011 g} = 2.221 mol C$ $\frac{2.221 mol C}{2.22 mol H} = 1.0005 C/H$

 2.24 g H $\cdot \frac{mol}{1.008 g} = 2.22 mol H$

 71.08 g O $\cdot \frac{mol}{15.995 g} = 4.443 mol O$ $\frac{4.443 mol O}{2.22 mol H} = 2.0014 O/H$

So there are 1 C atoms and 2 O atoms for every H atom. The empirical formula is CHO₂.

- 12. A compound is 53.31% by mass carbon, 11.18% by mass hydrogen and 35.51% by mass oxygen. What is the empirical formula? (*Ans*: C₂H₅O)
- 13. A compound is 47.35% by mass carbon, 10.60% by mass hydrogen and 42.05% by mass oxygen. What is the empirical formula? (*Ans*: $C_3H_8O_2$)
- 14. A compound is 39.13% by mass carbon, 8.76% by mass hydrogen and 52.12% by mass oxygen. What is the empirical formula? (*Ans*: C₃H₈O₃)

- 15. A compound is 48.64% by mass carbon, 8.16% by mass hydrogen and 43.20% by mass oxygen. What is the empirical formula? (*Ans*: C₃H₆O₂)
- 16. A compound is 68.85% by mass carbon, 4.95% by mass hydrogen and 26.20% by mass oxygen. What is the empirical formula? (*Ans*: C₇H₆O₂ this one is hard!)